Муниципальное общеобразовательное учреждение средняя общеобразовательная школа N_{2} 32

РАССМОТРЕНО на заседании центра Точных наук Протокол№ 1

от« <u>28</u> » <u>августа</u> 20<u>23</u> Руководитель центра:

Евод Е.П.Голубева

СОГЛАСОВАНО с зам.директора по УВР

от «29 » августа 2023 г.

_М.В.Старовойтова

УТВЕРЖДЕНО

Директор МОУСОШ №32 А.В.Кныш

Приказ № 192

от «31» августа 2023 г.

РАБОЧАЯ ПРОГРАММА

по алгебре для 7-9 класса

г. Комсомольск-на-Амуре

Нормативно-правовое обеспечивание

Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта второго поколения основного общего образования по математике:

- Федерального Закона «Об образовании в Российской Федерации» «273-ФЗ от 29 декабря 2012 года;
- Федерального Государственного Образовательного Стандарта основного общего образования (приказ Министерства образования и науки Российской Федерации от 17 декабря 2014 года №1897);
- Основной Образовательной программы основного общего образования МОУ СОШ № 32, утвержденной педагогическим советом, протокол № от 29.08.2020г.;
- Сборника нормативных документов. Математика / Программа подготовлена институтом стратегических исследований в образовании РАО. Научные руководители член-корреспондент РАОА. М. Кондаков, академик РАО Л. П. Кезина, Составитель Е. С. Савинов./ М.: «Просвещение», 2012;
- Авторская программа по курсу алгебры (7 9 классы), созданной на основе единой концепции преподавания математики в средней школе, разработанной А.Г.Мерзляком, В.Б.Полонским, М.С.Якиром, Д.А. Номировским, включенных в систему «Алгоримт успеха» (М.: Вентана-Граф, 2014) и обеспечена УМК для 7-9-го классов «Алгебра 7», «Алгебра 8» и «Алгебра 9»/ А.Г.Мерзляк, В.Б.Полонский, М.С.Якир/М.: Вентана-Граф, 2014.

В данных документах учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования. Сознательное овладение учащимися системой алгебраических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования. Практическая значимость школьного курса алгебры обусловлена тем, что её объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Изучение алгебры позволяет формировать умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе изучения алгебры школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса алгебры является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Тем самым алгебра занимает одно из ведущих мест в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, алгебра вносит значительный вклад в эстетическое воспитание учащихся.

В организации учебно — воспитательного процесса важную роль играют задачи. Они являются и целью, и средством обучения. Важным условием правильной организации этого процесса является выбор рациональной системы методов и приемов обучения, специфики решаемых образовательных и воспитательных задач.

Целью изучения курса математике в 7 - 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.

В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.

Предлагаемый курс позволяет обеспечить формирование как *предметных* умений, так и *универсальных учебных действий* школьников, а также способствует достижению определённых во $\Phi\Gamma$ ОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

В курсе алгебры можно выделить следующие основные содержательные линии: арифметика; алгебра; функции; вероятность и статистика. Наряду с этим в содержание включены два дополнительных методологических раздела: логика и математика историческом развитии, что связано реализацией общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия — «Логика и множества» учащимися некоторыми служит овладения элементами универсального математического языка, вторая — «Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса.

II. Общая характеристика учебного предмета «Алгебра»

Настоящая программа по математике для основной школы является логическим продолжением программы «Перспективная школа» для начальной школы, а также продолжением курса «Математика» 5-6 класса и вместе с ней составляет описание непрерывного курса математики с 1-го по 9-й класс общеобразовательной школы по $\Phi\Gamma$ OC.

В основе содержания обучения математике лежит овладение учащимися следующими видами компетенций: **предметной, коммуникативной, организационной** и **общекультурной**. В соответствии с этими видами компетенций выделены главные содержательно-целевые направления развития учащихся средствами предмета «Математика».

Предметная компетенция. Под предметной компетенцией понимается осведомлённость школьников о системе основных математических представлений и овладение ими необходимыми предметными умениями. Формируются следующие образующие эту компетенцию представления: о математическом языке как средстве выражения математических законов, закономерностей и т.д.; о математическом моделировании как одном из важных методов познания мира. Формируются следующие образующие эту компетенцию умения: создавать простейшие математические модели,

работать с ними и интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения математических задач, а также применять эти знания и умения для решения многих жизненных задач.

Коммуникативная компетенция.

Под коммуникативной компетенцией понимается сформированность умения ясно и чётко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая её критическому анализу, отстаивать (при необходимости) свою точку зрения, выстраивая систему аргументации. Формируются образующие эту компетенцию умения, а также умения извлекать информацию из разного рода источников, преобразовывая её при необходимости в другие формы (тексты, таблицы, схемы и т.д.).

Организационная компетенция.

Под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые учащимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу (цель), разбивать её на составные части, на которых будет основываться процесс её решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей.

Общекультурная компетенция.

Под общекультурной компетенцией понимается осведомленность школьников о математике как элементе общечеловеческой культуры, её месте в системе других наук, а также её роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: об уровне развития математики на разных исторических этапах; о высокой практической значимости математики с точки зрения создания и развития материальной культуры человечества, а также о важной роли математики с точки зрения формировании таких важнейших черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др.

Планируемые предметные , метапредметные результаты освоения учебного предмета «Алгебра»

Взаимосвязь результатов освоения предмета «Математика» можно системно представить в виде схемы. При этом обозначение ЛР указывает, что продвижение учащихся к новым образовательным результатам происходит в соответствии с линиями развития средствами предмета.

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД):

Регулятивные УУД:

7-9-й классы

- самостоятельно *обнаруживать* и формулировать учебную проблему в классной и индивидуальной учебной деятельности;
- *выдвигать* версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;
- составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

- работая по предложенному или самостоятельно составленному плану, *использовать* наряду с основными и дополнительные средства (справочная литература, сложныек приборы, компьютер);
- планировать свою индивидуальную образовательную траекторию;
- *работать* по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);
- свободно *пользоваться* выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;
- в ходе представления проекта давать оценку его результатам;
- самостоятельно *осознавать* причины своего успеха или неуспеха и находить способывыхода из ситуации неуспеха;
- уметь оценить степень успешности своей индивидуальной образовательной деятельности;
- давать оценку своим личным качествам и чертам характера («каков я»), определять напрвления своего развития («каким я хочу стать», «что мне для этого надо сделать»)

Средством формирования регулятивных УУД служат технология системно-деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

7–9-й классы

- анализировать, сравнивать, классифицировать и обобщать факты и явления;
- осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);
- *строить* логически обоснованное рассуждение, включающее установление причинноследственных связей;
- *создавать* математические модели;
- составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
- вычитывать все уровни текстовой информации.
- *уметь определять* возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.
- понимая позицию другого человека, *различать* в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.
- самому *создавать* источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;
- *уметь использовать* компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника, позволяющие продвигаться по всем шести линиям развития.

- 1-я ЛР Использование математических знаний для решения различных математических задач и оценки полученных результатов.
- 2-я ЛР Совокупность умений по использованию доказательной математической речи.
- 3-я ЛР Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.
- 4-я ЛР Умения использовать математические средства для изучения и описания реальных процессов и явлений.
- 5-я ЛР Независимость и критичность мышления.
- 6-я ЛР Воля и настойчивость в достижении цели.

Коммуникативные УУЛ:

7 — **9-**й классы

- -самостоятельно *организовывать* учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
- -отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
- -в дискуссии уметьвыдвинуть контраргументы;
- -учиться *критично относиться* к своему мнению, с достоинством *признавать* ошибочность своего мнения (если оно таково) и корректировать его;
- -понимая позицию другого, *различать* в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
- -уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Средством формирования коммуникативных УУД служат технология проблемного диалога (побуждающий и подводящий диалог) и организация работы в малых группах, также использование на уроках элементов технологии продуктивного чтения.

Предметные:

- -умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;
- -владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- -умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
- -умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между вели¬чинами на основе обобщения частных случаев и эксперимента;

- -умение решать линейные и квадратные уравнения и нера¬венства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;
- -овладение системой функциональных понятий, функцио¬нальным языком и символикой, умение строить графики функций, описывать их свойства, использовать функцио¬нально-графические представления для описания и анализа математических задач и реальных зависимостей;
- -овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий;
- -умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

Планируемые результаты изучения учебного предмета «Алгебра»

По окончании изучения курса учащийся должен уметь:

Алгебра - 7

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

- натуральных, целых, рациональных, иррациональных, действительных числах;
- степени с натуральными показателями и их свойствах;
- одночленах и правилах действий с ними;
- многочленах и правилах действий с ними;
- формулах сокращённого умножения;
- тождествах; методах доказательства тождеств;
- линейных уравнениях с одной неизвестной и методах их решения;
- системах двух линейных уравнений с двумя неизвестными и методах их решения.
- выполнять действия с одночленами и многочленами;
- узнавать в выражениях формулы сокращённого умножения и применять их;
- раскладывать многочлены на множители;
- выполнять тождественные преобразования целых алгебраических выражений;
- доказывать простейшие тождества;
- находить число сочетаний и число размещений;
- решать линейные уравнения с одной неизвестной;
- *решать* системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;
- решать текстовые задачи с помощью линейных уравнений и систем;
 - *находить* решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- *создавать* продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

- *–уметь* преобразовывать алгебраические выражения, решать уравнения с одной переменной;
- -находить область определения функции, строить графики прямой пропорциональности и линейной функции;
- -выполнять действия над степенями с натуральными показателями;
- *-выполнять* сложение, вычитание и умножение многочленов, раскладывать многочлены на множители;
- *–применять* формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители;
- *–уметь* решать системы линейных уравнений с двумя переменными и применять их при решении текстовых задач.

Алгебра - 8

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

- алгебраической дроби; основном свойстве дроби;
- правилах действий с алгебраическими дробями;
- степенях с целыми показателями и их свойствах;
- стандартном виде числа;
- функциях y = kx + b, $y = x^2$, $y = \frac{k}{x}$, их свойствах и графиках;
- понятии квадратного корня и арифметического квадратного корня;
- свойствах арифметических квадратных корней;
- функции $y = \sqrt{x}$, её свойствах и графике;
- формуле для корней квадратного уравнения;
- теореме Виета для приведённого и общего квадратного уравнения;
- основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;
- методе решения дробных рациональных уравнений;
- основных методах решения систем рациональных уравнений.
- сокращать алгебраические дроби;
- выполнять арифметические действия с алгебраическими дробями;
- использовать свойства степеней с целыми показателями при решении задач;
- записывать числа в стандартном виде;
- выполнять тождественные преобразования рациональных выражений;
- *строить* графики функций y = kx + b, $y = x^2$, $y = \frac{k}{x}$ и использовать их свойства при решении задач;
- вычислять арифметические квадратные корни;
- применять свойства арифметических квадратных корней при решении задач;

- *строить* график функции $y = \sqrt{x}$ и использовать его свойства при решении задач;
- решать квадратные уравнения;
- применять теорему Виета при решении задач;
- *решать* целые рациональные уравнения методом разложения на множители и методом замены неизвестной;
- решать дробные уравнения;
- решать системы рациональных уравнений;
- *решать* текстовые задачи с помощью квадратных и рациональных уравнений и их систем;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- *создавать* продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
- -уметь выполнять тождественные преобразования рациональных выражений;
- -иметь представление об иррациональных числах, уметь выполнять преобразования, содержащих корни;
- -уметь решать квадратные уравнения, рациональные уравнения и применять их к решению задач;
- -уметь решать линейные неравенства с одной переменной и их системы;
- -применять свойства степени с целым показателем в вычислениях и преобразованиях;
- -иметь начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

Алгебра – 9

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

- свойствах числовых неравенств;
- методах решения линейных неравенств;
- свойствах квадратичной функции;
- методах решения квадратных неравенств;
- методе интервалов для решения рациональных неравенств;
- методах решения систем неравенств;
- свойствах и графике функции $y = x^n$ при натуральном n;
- определении и свойствах корней степени *n*;
- степенях с рациональными показателями и их свойствах;
- определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;
- определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;

- формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.
 - Использовать свойства числовых неравенств для преобразования неравенств;
 - доказывать простейшие неравенства;
 - решать линейные неравенства;
 - строить график квадратичной функции и использовать его при решении задач;
 - решать квадратные неравенства;
 - решать рациональные неравенства методом интервалов;
 - решать системы неравенств;
- *строить* график функции $y = x^n$ при натуральном *п*и использовать его при решении задач;
- находить корни степени п;
- использовать свойства корней степени ппри тождественных преобразованиях;
- находить значения степеней с рациональными показателями;
- решать основные задачи на арифметическую и геометрическую прогрессии;
- *находить* сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- *создавать* продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

Содержание учебного предмета «Алгебра»

7 – 9 классов

В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования в 7–9 классах предмет «Математика» делится на два предмета: «Алгебра» и «Геометрия». Общее количество уроков алгебры в неделю в 7 – 9 класс – по 4 часа; в году 7 – 9 класс – по 416 часа, за курс 7 – 9 класс всего 416 часов. Распределение учебного времени между этими предметами представлено в таблице.

Курс	Количество часов в неделю	Количество часов в год
Алгебра 7 класс	3	105
Алгебра 8 класс	4	140
Алгебра 9 класс	4	136
ИТОГО		381

Содержание математического образования основной школе формируется на основе фундаментального ядра школьного математического образования. В программе оно представлено в виде совокупности содержательных разделов, конкретизирующих соответствующие блоки фундаментального ядра применительно к основной школе. Программа регламентирует объем материала, обязательного для изучения в основной школе, а также дает его распределение между 5—6 и 7—9 классами.

Содержание математического образования в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности — умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется распределенно — в ходе рассмотрения различных

вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

7 класс:

1. Выражения, тождества, уравнения.

Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.

Основная цель — систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений дает возможность повторить с учащимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки неравенств, дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия учащимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах = впри различных значениях а и в. Продолжается работа по формированию у учащихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

Изучение темы завершается ознакомлением учащихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Учащиеся должны уметь использовать эти характеристики для анализа ряда данных в несложных ситуациях.

Контрольных работ: 1

2. Степень с натуральным показателем.

Степень с натуральным показателем и ее свойства. Одночлен. Функции $y = x^2$, $y = x^3$ и их графики.

Основная цель — выработать умение выполнять действия над степенями с натуральными показателями.

В данной теме дается определение степени с натуральным показателем. В курсе математики б класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе даетсяпредставление нахождении значений степени с помощью калькулятора. Рассматриваются свойства степени с натуральным показателем. На примере доказательства свойств степени учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений, содержащих степени, особое внимание следует обратить на порядок действий.

Рассмотрение функций $y = x^2$, $y = x^3$ позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание учащихся на особенности графика функции $y = x^2$: график проходит через начало координат, ось Оуявляется его осью симметрии, график расположен в верхней полуплоскости.

Умение строить графики функций $y = x^2$ и $y = x^3$ используется для ознакомления учащихся с графическим способом решения уравнений.

Контрольных работ: 1

3. Многочлены.

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

Основная цель — выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.

Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.

В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.

4. Формулы сокращенного умножения.

Формулы $(a + b)^2 = a^2 \pm 2ab + b^2$, $(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$, $(a \pm b)(a^2 + ab + b^2) = a^3 \pm b^3$. Применение формул сокращенного умножения в преобразованиях выражений.

Основная цель — выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у учащихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам $(a - b) (a + b) = a^2 - b^2$, $(a \pm b)^2 = a^2 \pm 2ab + b^2$. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево».

Наряду с указанными рассматриваются также формулы $(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$, $a^3 \pm b^3 = (a \pm b) (a^2 + ab + b^2)$. Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.

В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.

Контрольных работ: 2

5. Функции.

Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и ее график.

Основная цель — ознакомить учащихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.

Данная тема является начальным этапом в систематической функциональной подготовке учащихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у учащихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу.

Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции y = kx, где и $k \neq 0$, как зависит от значенийk иk взаимное расположение графиков двух функций видаk0.

Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением

примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.

Контрольных работ: 1

6. Системы линейных уравнений.

Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.

Основная цель — ознакомить учащихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.

Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.

Формируется умение строить график уравнения a + by = c, где $a \neq 0$ или $b \neq 0$, при различных значениях a, b, c. Введение графических образов дает возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными.

Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.

Контрольных работ: 1

7. Повторение.

Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 7 классе.

Контрольных работ: 1

• 8 класс:

1. Рациональные дроби.

Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция $y = \frac{k}{x}$ и ее график.

Основная цель — выработать умение выполнять тождественные преобразования рациональных выражений.

Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с учащимися преобразования целых выражений.

Главное место в данной теме занимают алгоритмы действий дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда

можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем буду усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими. При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел. Изучение темы завершается рассмотрением свойств

графикафункции $y = \frac{k}{x}$.

Контрольных работ: 2

2. Степень с целым показателем. Элементы статистики.

Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.

Основная цель — выработать умение применять свойств, степени с целым показателем в вычислениях и преобразованиях сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.

Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Учащимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные учащимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.

Контрольных работ: 1

3. Квадратные корни.

Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция $y = \sqrt{x}$, ее свойства и график.

Основная цель — систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивно представление о том, что каждый отрезок имеет длину и потому каждой

точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество $\sqrt{a^2}=|a|$, которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида $\frac{a}{\sqrt{b}}$, $\frac{a}{\sqrt{b}\pm\sqrt{c}}$. Умениепреобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений учащихся. Рассматриваются функция $\delta = \sqrt{\delta}$, ее свойства и график. При изучении функции $y = \sqrt{x}$ показывается ее взаимосвязь с функцией $y = x^2$, где $x \ge 0$.

Контрольных работ: 1

4. Квадратные уравнения.

Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Основная цель — выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида $ax^2 + bx + c = 0$, где $a \neq 0$, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

Контрольных работ: 2

5. Повторение.

Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 8 классе.

Контрольных работ: 1

9 класс

1. Неравенства.

- Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Линейные неравенства с одной переменной и их системы.
- Основная цель ознакомить учащихся с применение: неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы. Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Т ремы о почленном сложении и умножении неравенств находить применение при выполнении простейших упражнений на оценку выражений по методу границ. абсолютной погрешности И Вводятся понятия точности приближения, относительной погрешности. Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.
- В связи с решением линейных неравенств с одной переменно: дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств.
- При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решат простейшие неравенства вида ах >b, ах
b, остановившись специально на случае, когдаа <0.
- В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

Контрольных работ: 1

2. Квадратичная функция.

- Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция $y = ax^2 + bx + c$, ее свойства и график. Степенная функция.
- Основная цель расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции. I
- В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.
- Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.
- Изучение квадратичной функции начинается с рассмотрения функции $y = ax^2$, ее свойств и особенностей графика, а также других частных видов квадратичной функции функций $y = ax^2 + b$, $y = a (x m)^2$. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы учащиеся поняли, что график функции $y = ax^2 + bx + c$ может быть получен из графика функции $y = ax^2 c$ помощью двух параллельных переносов. Приемы построения графика функции $y = ax^2 + bx + c$ отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у учащихся умения

- указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.
- При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.
- Учащиеся знакомятся со свойствами степенной функции $y = x^n$ при четном и нечетном натуральном показателе п. Вводится понятие корня га-й степени. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

Контрольных работ: 1

3. Неравенства с одной переменной

- Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной переменной. Метод интервалов.
- Основная цель систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной, сформировать умение решать неравенства вида $ax^2 + bx + c > 0$ или $ax^2 + bx + c < 0$, где $a \ne 0$.
- В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Учащиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.
- Расширяются сведения о решении дробных рациональных уравнений. Учащиеся знакомятся с некоторыми специальными приемами решения таких уравнений.
- Формирование умений решать неравенства вида $ax^2 + bx + c > 0$ или $ax^2 + bx + c < 0$, где $a \neq 0$, осуществляется с опорой на сведения о графике квадратичной функции.
- Учащиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

4. Неравенства с двумя переменными

Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

- Основная цель выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.
- В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй.
- Известный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.
- Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных учащимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать учащимся, что системы двух уравнений с двумя переменными: второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.

Контрольных работ: 2

5. Элементы прикладной математики.

Математическое моделирование. Процентные расчеты. Приближенные вычисления. Основные правила комбинаторики. Относительная частота и вероятность случайного события. Классическое определение вероятности. Начальные сведения о статистике.

Основная цель — ознакомить учащихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и подсчитать их число. Разъясняется комбинаторное правило умножения, которое используется в дальнейшем при выводе формул для подсчета числа перестановок, размещений и сочетаний. При изучении данного материала необходимо обратить внимание учащихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме учащиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание учащихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

Контрольных работ: 1

6. Числовые последовательности.

Числовые последовательности. Арифметическая и геометрическая прогрессии. Формулы п-гочлена и суммы первых п членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Основная цель — дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «п-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых га членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

Контрольных работ: 1

7. Повторение (итоговое)

Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 9 классе.

Контрольных работ: 1

V.

Особенностью тематического планирования является то, что в нём содержится описание возможных видов образовательной деятельности учащихся в процессе усвоения соответствующего содержания, направленных на достижение поставленных целей обучения. Это ориентирует учителя на усиление деятельностного подхода в обучении, на организацию разнообразной учебной деятельности, отвечающей современным психолого-педагогическим воззрениям, на использование современных технологий.

В изучении алгебры предполагается внеурочная деятельность в виде создания продукта (результат проектной деятельности), для изучения и описания которого используются математические модели, которые позволяют учащимся осуществлять различные виды проектной деятельности, оценивать свои потребности и возможности и сделать обоснованный выбор профиля обучения в старшей школе.

Предлагаемые темы проектов по алгебре для 7 класса

- «Божественная пропорция» (о возникновении учения об отношении и пропорциях, об использовании ее в архитектуре и в искусстве).
- Волшебные построения магических прямоугольников.
- Виды симметрии. Симметрия в архитектуре и жизни.
- Влияние чисел на события жизни: вымысел или реальность? (на примере чисел 7 и 13).
- Знакомый и незнакомый модуль.
- Золотое сечение гармоничная пропорция.
- Избыток и недостаток
- Последние цифры степеней

1. Предлагаемые темы проектов по алгебре для 8 класса

- Представление рациональной дроби в виде суммы простейших дробей.
- Пропорция. Прямая и обратная пропорциональность.
- Разложение многочлена на множители.
- Рациональные числа
- Решение алгебраических уравнений.

• Решение задач с помощью уравнений

Решение уравнений в Древней Индии, Греции, Китае.

Системы уравнений в задачах экономики

Современные задачи практики, решаемые с помощью приближенных вычислений.

Старинные математические развлечения и действия над алгебраическими выражениями.

Степень с натуральным показателем.

Строим графики сложных функций.

Теорема Виета для третьей и четвертой степени.

Устный счет - это просто

Функции. Виды функций. Графики.

Этот удивительно симметричный мир.

Темы проектов по математике 9 класс

- 1. 10 способов решения квадратных уравнений
- 2. Алгебраические преобразования с параметрами
- 3. Алгебраические уравнения. Виды и способы их решения
- 4. Алгебраическое и графическое решение линейных уравнений, содержащих модули
- 5. Алгоритмы решения текстовых задач
- 6. Асимптоты графиков дробно-рациональной функции
- 7. Астрономия на координатной плоскости
- 8. Быстрый счет без калькулятора
- 9. Введение в мир факториалов
- 10. Великолепная семерка

Защита проектов по выбору 7-8класс осуществляется на школьной научно-практической конференции, 9 класс- итоговая защита по положению «Об организации проектной и учебно-исследовательской деятельности учащихся».

Рекомендации по оценке знаний и умений учащихся по алгебре

Опираясь на эти рекомендации, учитель оценивает знания и умения учащихся с учетом их индивидуальных особенностей.

- 1. Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.
- 2. Основными формами проверки знаний и умений учащихся по математике являются письменная контрольная работа и устный опрос.

При оценке письменных и устных ответов учитель в первую очередь учитывает показанные учащимися знания и умения. Оценка зависит также от наличия и характера погрешностей, допущенных учащимися.

3.Среди погрешностей выделяются ошибки и недочеты. Погрешность считается ошибкой, если, она свидетельствует о том, что ученик не овладел основными знаниями, умениями,

указанными В

программе.

К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, не считающихся в программе основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения; неаккуратная запись; небрежное выполнение чертежа.

Граница между ошибками и недочетами является в некоторой степени условной. При одних обстоятельствах допущенная учащимися погрешность может рассматриваться учителем как ошибка, в другое время и при обстоятельствах — как недочет.

4.Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.

Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты я обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.

Решение задачи считается безупречным, если правильно выбран способ решения, саморешение сопровождается необходимыми объяснениями, верно выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.

- 5. Оценка ответа учащегося при устном и письменном опросе проводится по пятибалльной системе, т. е. за ответ выставляется одна из отметок: 1 (плохо), 2 (неудовлетворительно), 3 (удовлетворительно), 4 (хорошо), 5 (отлично).
- 6. Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им заданий.

Критерии ошибок

К грубым ошибкам относятся ошибки, которые обнаруживают незнание учащимися формул, правил, основных свойств, теорем и неумение их применять; незнание приемов решения задач, рассматриваемых в учебниках, а также вычислительные ошибки, если они не являются опиской;

К негрубым ошибкам относятся: потеря корня или сохранение в ответе постороннего корня; отбрасывание без объяснений одного из них и равнозначные им;

К недочетам относятся: нерациональное решение, описки, недостаточность или отсутствие пояснений, обоснований в решениях

Ответ оценивается отметкой «5», если ученик:

- ✓ полно раскрыл содержание материала в объеме, предусмотренном программой и учебником,
- ✓ изложил материал грамотным языком в определенной логической последовательности, точно

используя математическую терминологию и символику;

- ✓ правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- ✓ показал умение иллюстрировать теоретические положения конкретными примерами,

применять их в новой ситуации при выполнении практического задания;

✓ продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность

и устойчивость используемых при отработке умений и навыков;

 ✓ отвечал самостоятельно без наводящих вопросов учителя. Возможны одна - две неточности

при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по

замечанию учителя.

Ответ оценивается отметкой «4», если он удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

- ✓ в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;
- ✓ допущены один два недочета при освещении основного содержания ответа, исправленные по замечанию учителя;
- ✓ допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию учителя.

Отметка «3» ставится в следующих случаях:

- ✓ неполно или непоследовательно раскрыто содержание материала, по показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»);
- ✓ имелись затруднения или допущены ошибки в определении понятий, использовании

математической терминологии, чертежах, выкладках, исправленные после нескольких

наводящих вопросов учителя;

 ✓ ученик не справился с применением теории в новой ситуации при выполнении практического

задания, но выполнил задания обязательного уровня сложности по данной теме;

✓ при знании теоретического материала выявлена недостаточная сформированность основных

умений и навыков.

Отметка «2» ставится в следующих случаях:

- ✓ не раскрыто основное содержание учебного материала;
- ✓ обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
- ✓ допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Оценка письменных работ учащихся

Отметка «5» ставится, если:

- ✓ работа выполнена полностью;
- ✓ в логических рассуждениях и обосновании решения нет пробелов и ошибок;
- ✓ в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).

Отметка «4» ставится, если:

- ✓ работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
- ✓ допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).

Отметка «3» ставится, если:

✓ допущены более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

✓ допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мерс.

Учебно-методический комплект:

7 класс

1. Алгебра: 7 класс: учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2012.

- 2. Алгебра: 7 класс: дидактические материалы: пособие для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, Е.М. Рабинович, М.С. Якир. М.: Вентана-Граф, 2013.
- 3. Алгебра: 7 класс: методическое пособие / Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. М.: Вентана-Граф, 2013.

8 класс

- 1. Алгебра: 8 класс: учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. М.: Вентана –Граф, 2013.
- 2. Алгебра: 8 класс: дидактические материалы: сборник задач и контрольных работ/ А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. М.: Вентана –Граф, 2013.
- 3. Алгебра : 8 класс: методическое пособие / Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. М.: Вентана Граф.

9 класс

- 1. Алгебра 9 класс: учебник для учащихся общеобразовательных учреждений/А. Г. Мерзляк, В. Б. Полонский, М.С. Якир. М.: Вентана-Граф, 2019.
- 2. Алгебра 9класс: методическое пособие/ Е. В. Буцко, А. Г. Мерзляк, В. Б. Полонский, М. С. Якир М: Вентана Граф, 2014
- 3. Алгебра 9классдидактические материалы: пособие для учащихся общеобразовательных учреждений / Е. В. Буцко, А. Г. Мерзляк, В. Б. Полонский, М. С. Якир М: Вентана Граф, 2014

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 726242342903868691666490759959119263676517201330

Владелец Кныш Алексей Валентинович

Действителен С 19.09.2023 по 18.09.2024